3.1.78 \(\int \frac {(d+e x)^3 (d^2-e^2 x^2)^{5/2}}{x^8} \, dx\) [78]

Optimal. Leaf size=206 \[ -\frac {3 e^6 (16 d-5 e x) \sqrt {d^2-e^2 x^2}}{16 x}+\frac {e^4 (16 d+5 e x) \left (d^2-e^2 x^2\right )^{3/2}}{16 x^3}-\frac {e^2 (24 d+5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{40 x^5}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}-3 d e^7 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {15}{16} d e^7 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \]

[Out]

1/16*e^4*(5*e*x+16*d)*(-e^2*x^2+d^2)^(3/2)/x^3-1/40*e^2*(5*e*x+24*d)*(-e^2*x^2+d^2)^(5/2)/x^5-1/7*d*(-e^2*x^2+
d^2)^(7/2)/x^7-1/2*e*(-e^2*x^2+d^2)^(7/2)/x^6-3*d*e^7*arctan(e*x/(-e^2*x^2+d^2)^(1/2))-15/16*d*e^7*arctanh((-e
^2*x^2+d^2)^(1/2)/d)-3/16*e^6*(-5*e*x+16*d)*(-e^2*x^2+d^2)^(1/2)/x

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 206, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1821, 825, 827, 858, 223, 209, 272, 65, 214} \begin {gather*} -3 d e^7 \text {ArcTan}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}-\frac {e^2 (24 d+5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{40 x^5}-\frac {15}{16} d e^7 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )-\frac {3 e^6 (16 d-5 e x) \sqrt {d^2-e^2 x^2}}{16 x}+\frac {e^4 (16 d+5 e x) \left (d^2-e^2 x^2\right )^{3/2}}{16 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^3*(d^2 - e^2*x^2)^(5/2))/x^8,x]

[Out]

(-3*e^6*(16*d - 5*e*x)*Sqrt[d^2 - e^2*x^2])/(16*x) + (e^4*(16*d + 5*e*x)*(d^2 - e^2*x^2)^(3/2))/(16*x^3) - (e^
2*(24*d + 5*e*x)*(d^2 - e^2*x^2)^(5/2))/(40*x^5) - (d*(d^2 - e^2*x^2)^(7/2))/(7*x^7) - (e*(d^2 - e^2*x^2)^(7/2
))/(2*x^6) - 3*d*e^7*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]] - (15*d*e^7*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/16

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 825

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(d + e*x)^
(m + 1))*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2)*(c*d^2 + a*e^2)))*((d*g - e*f*(m + 2))*(c*d^2 + a*e^2) - 2*c*d^2*
p*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 + a*e^2) + 2*c*d*p*(e*f - d*g))*x), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^
2 + a*e^2)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) - c*(2*c*d*(d*g*(2*p +
 1) - e*f*(m + 2*p + 2)) - 2*a*e^2*g*(m + 1))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e
^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 827

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2*p + 2))), x] + Di
st[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1)*Simp[g*(2*a*e + 2*a*e*m) + (g*(2*c
*d + 4*c*d*p) - 2*c*e*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2,
0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
!ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps

\begin {align*} \int \frac {(d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}{x^8} \, dx &=-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {\int \frac {\left (d^2-e^2 x^2\right )^{5/2} \left (-21 d^4 e-21 d^3 e^2 x-7 d^2 e^3 x^2\right )}{x^7} \, dx}{7 d^2}\\ &=-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}+\frac {\int \frac {\left (126 d^5 e^2+21 d^4 e^3 x\right ) \left (d^2-e^2 x^2\right )^{5/2}}{x^6} \, dx}{42 d^4}\\ &=-\frac {e^2 (24 d+5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{40 x^5}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}-\frac {\int \frac {\left (1008 d^7 e^4+210 d^6 e^5 x\right ) \left (d^2-e^2 x^2\right )^{3/2}}{x^4} \, dx}{336 d^6}\\ &=\frac {e^4 (16 d+5 e x) \left (d^2-e^2 x^2\right )^{3/2}}{16 x^3}-\frac {e^2 (24 d+5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{40 x^5}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}+\frac {\int \frac {\left (4032 d^9 e^6+1260 d^8 e^7 x\right ) \sqrt {d^2-e^2 x^2}}{x^2} \, dx}{1344 d^8}\\ &=-\frac {3 e^6 (16 d-5 e x) \sqrt {d^2-e^2 x^2}}{16 x}+\frac {e^4 (16 d+5 e x) \left (d^2-e^2 x^2\right )^{3/2}}{16 x^3}-\frac {e^2 (24 d+5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{40 x^5}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}-\frac {\int \frac {-2520 d^{10} e^7+8064 d^9 e^8 x}{x \sqrt {d^2-e^2 x^2}} \, dx}{2688 d^8}\\ &=-\frac {3 e^6 (16 d-5 e x) \sqrt {d^2-e^2 x^2}}{16 x}+\frac {e^4 (16 d+5 e x) \left (d^2-e^2 x^2\right )^{3/2}}{16 x^3}-\frac {e^2 (24 d+5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{40 x^5}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}+\frac {1}{16} \left (15 d^2 e^7\right ) \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx-\left (3 d e^8\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx\\ &=-\frac {3 e^6 (16 d-5 e x) \sqrt {d^2-e^2 x^2}}{16 x}+\frac {e^4 (16 d+5 e x) \left (d^2-e^2 x^2\right )^{3/2}}{16 x^3}-\frac {e^2 (24 d+5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{40 x^5}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}+\frac {1}{32} \left (15 d^2 e^7\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )-\left (3 d e^8\right ) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )\\ &=-\frac {3 e^6 (16 d-5 e x) \sqrt {d^2-e^2 x^2}}{16 x}+\frac {e^4 (16 d+5 e x) \left (d^2-e^2 x^2\right )^{3/2}}{16 x^3}-\frac {e^2 (24 d+5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{40 x^5}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}-3 d e^7 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{16} \left (15 d^2 e^5\right ) \text {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right )\\ &=-\frac {3 e^6 (16 d-5 e x) \sqrt {d^2-e^2 x^2}}{16 x}+\frac {e^4 (16 d+5 e x) \left (d^2-e^2 x^2\right )^{3/2}}{16 x^3}-\frac {e^2 (24 d+5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{40 x^5}-\frac {d \left (d^2-e^2 x^2\right )^{7/2}}{7 x^7}-\frac {e \left (d^2-e^2 x^2\right )^{7/2}}{2 x^6}-3 d e^7 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {15}{16} d e^7 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.73, size = 188, normalized size = 0.91 \begin {gather*} \frac {\sqrt {d^2-e^2 x^2} \left (-80 d^7-280 d^6 e x-96 d^5 e^2 x^2+770 d^4 e^3 x^3+992 d^3 e^4 x^4-525 d^2 e^5 x^5-2496 d e^6 x^6+560 e^7 x^7\right )}{560 x^7}+\frac {15}{8} d e^7 \tanh ^{-1}\left (\frac {\sqrt {-e^2} x}{d}-\frac {\sqrt {d^2-e^2 x^2}}{d}\right )+3 d e^4 \left (-e^2\right )^{3/2} \log \left (-\sqrt {-e^2} x+\sqrt {d^2-e^2 x^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^3*(d^2 - e^2*x^2)^(5/2))/x^8,x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-80*d^7 - 280*d^6*e*x - 96*d^5*e^2*x^2 + 770*d^4*e^3*x^3 + 992*d^3*e^4*x^4 - 525*d^2*e^5
*x^5 - 2496*d*e^6*x^6 + 560*e^7*x^7))/(560*x^7) + (15*d*e^7*ArcTanh[(Sqrt[-e^2]*x)/d - Sqrt[d^2 - e^2*x^2]/d])
/8 + 3*d*e^4*(-e^2)^(3/2)*Log[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e^2*x^2]]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(579\) vs. \(2(180)=360\).
time = 0.08, size = 580, normalized size = 2.82

method result size
risch \(-\frac {\sqrt {-e^{2} x^{2}+d^{2}}\, \left (-560 e^{7} x^{7}+2496 d \,e^{6} x^{6}+525 d^{2} e^{5} x^{5}-992 d^{3} e^{4} x^{4}-770 d^{4} e^{3} x^{3}+96 d^{5} e^{2} x^{2}+280 d^{6} e x +80 d^{7}\right )}{560 x^{7}}-\frac {3 d \,e^{8} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{\sqrt {e^{2}}}-\frac {15 d^{2} e^{7} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{16 \sqrt {d^{2}}}\) \(173\)
default \(3 d \,e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{5 d^{2} x^{5}}-\frac {2 e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{3 d^{2} x^{3}}-\frac {4 e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{d^{2} x}-\frac {6 e^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{6}+\frac {5 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{4}+\frac {3 d^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )}{d^{2}}\right )}{3 d^{2}}\right )}{5 d^{2}}\right )+e^{3} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{4 d^{2} x^{4}}-\frac {3 e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{2 d^{2} x^{2}}-\frac {5 e^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )}{2 d^{2}}\right )}{4 d^{2}}\right )+3 d^{2} e \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{6 d^{2} x^{6}}-\frac {e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{4 d^{2} x^{4}}-\frac {3 e^{2} \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{2 d^{2} x^{2}}-\frac {5 e^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )}{2 d^{2}}\right )}{4 d^{2}}\right )}{6 d^{2}}\right )-\frac {d \left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{7 x^{7}}\) \(580\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x^8,x,method=_RETURNVERBOSE)

[Out]

3*d*e^2*(-1/5/d^2/x^5*(-e^2*x^2+d^2)^(7/2)-2/5*e^2/d^2*(-1/3/d^2/x^3*(-e^2*x^2+d^2)^(7/2)-4/3*e^2/d^2*(-1/d^2/
x*(-e^2*x^2+d^2)^(7/2)-6*e^2/d^2*(1/6*x*(-e^2*x^2+d^2)^(5/2)+5/6*d^2*(1/4*x*(-e^2*x^2+d^2)^(3/2)+3/4*d^2*(1/2*
x*(-e^2*x^2+d^2)^(1/2)+1/2*d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))))))))+e^3*(-1/4/d^2/x^4*
(-e^2*x^2+d^2)^(7/2)-3/4*e^2/d^2*(-1/2/d^2/x^2*(-e^2*x^2+d^2)^(7/2)-5/2*e^2/d^2*(1/5*(-e^2*x^2+d^2)^(5/2)+d^2*
(1/3*(-e^2*x^2+d^2)^(3/2)+d^2*((-e^2*x^2+d^2)^(1/2)-d^2/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/
2))/x))))))+3*d^2*e*(-1/6/d^2/x^6*(-e^2*x^2+d^2)^(7/2)-1/6*e^2/d^2*(-1/4/d^2/x^4*(-e^2*x^2+d^2)^(7/2)-3/4*e^2/
d^2*(-1/2/d^2/x^2*(-e^2*x^2+d^2)^(7/2)-5/2*e^2/d^2*(1/5*(-e^2*x^2+d^2)^(5/2)+d^2*(1/3*(-e^2*x^2+d^2)^(3/2)+d^2
*((-e^2*x^2+d^2)^(1/2)-d^2/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)))))))-1/7*d*(-e^2*x^2+
d^2)^(7/2)/x^7

________________________________________________________________________________________

Maxima [A]
time = 0.52, size = 303, normalized size = 1.47 \begin {gather*} -3 \, d \arcsin \left (\frac {x e}{d}\right ) e^{7} - \frac {15}{16} \, d e^{7} \log \left (\frac {2 \, d^{2}}{{\left | x \right |}} + \frac {2 \, \sqrt {-x^{2} e^{2} + d^{2}} d}{{\left | x \right |}}\right ) - \frac {3 \, \sqrt {-x^{2} e^{2} + d^{2}} x e^{8}}{d} + \frac {15}{16} \, \sqrt {-x^{2} e^{2} + d^{2}} e^{7} - \frac {2 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} x e^{8}}{d^{3}} + \frac {5 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} e^{7}}{16 \, d^{2}} + \frac {3 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}} e^{7}}{16 \, d^{4}} - \frac {8 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}} e^{6}}{5 \, d^{3} x} + \frac {3 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {7}{2}} e^{5}}{16 \, d^{4} x^{2}} + \frac {2 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {7}{2}} e^{4}}{5 \, d^{3} x^{3}} - \frac {{\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {7}{2}} e^{3}}{8 \, d^{2} x^{4}} - \frac {3 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {7}{2}} e^{2}}{5 \, d x^{5}} - \frac {{\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {7}{2}} e}{2 \, x^{6}} - \frac {{\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {7}{2}} d}{7 \, x^{7}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x^8,x, algorithm="maxima")

[Out]

-3*d*arcsin(x*e/d)*e^7 - 15/16*d*e^7*log(2*d^2/abs(x) + 2*sqrt(-x^2*e^2 + d^2)*d/abs(x)) - 3*sqrt(-x^2*e^2 + d
^2)*x*e^8/d + 15/16*sqrt(-x^2*e^2 + d^2)*e^7 - 2*(-x^2*e^2 + d^2)^(3/2)*x*e^8/d^3 + 5/16*(-x^2*e^2 + d^2)^(3/2
)*e^7/d^2 + 3/16*(-x^2*e^2 + d^2)^(5/2)*e^7/d^4 - 8/5*(-x^2*e^2 + d^2)^(5/2)*e^6/(d^3*x) + 3/16*(-x^2*e^2 + d^
2)^(7/2)*e^5/(d^4*x^2) + 2/5*(-x^2*e^2 + d^2)^(7/2)*e^4/(d^3*x^3) - 1/8*(-x^2*e^2 + d^2)^(7/2)*e^3/(d^2*x^4) -
 3/5*(-x^2*e^2 + d^2)^(7/2)*e^2/(d*x^5) - 1/2*(-x^2*e^2 + d^2)^(7/2)*e/x^6 - 1/7*(-x^2*e^2 + d^2)^(7/2)*d/x^7

________________________________________________________________________________________

Fricas [A]
time = 1.80, size = 161, normalized size = 0.78 \begin {gather*} \frac {3360 \, d x^{7} \arctan \left (-\frac {{\left (d - \sqrt {-x^{2} e^{2} + d^{2}}\right )} e^{\left (-1\right )}}{x}\right ) e^{7} + 525 \, d x^{7} e^{7} \log \left (-\frac {d - \sqrt {-x^{2} e^{2} + d^{2}}}{x}\right ) + 560 \, d x^{7} e^{7} + {\left (560 \, x^{7} e^{7} - 2496 \, d x^{6} e^{6} - 525 \, d^{2} x^{5} e^{5} + 992 \, d^{3} x^{4} e^{4} + 770 \, d^{4} x^{3} e^{3} - 96 \, d^{5} x^{2} e^{2} - 280 \, d^{6} x e - 80 \, d^{7}\right )} \sqrt {-x^{2} e^{2} + d^{2}}}{560 \, x^{7}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x^8,x, algorithm="fricas")

[Out]

1/560*(3360*d*x^7*arctan(-(d - sqrt(-x^2*e^2 + d^2))*e^(-1)/x)*e^7 + 525*d*x^7*e^7*log(-(d - sqrt(-x^2*e^2 + d
^2))/x) + 560*d*x^7*e^7 + (560*x^7*e^7 - 2496*d*x^6*e^6 - 525*d^2*x^5*e^5 + 992*d^3*x^4*e^4 + 770*d^4*x^3*e^3
- 96*d^5*x^2*e^2 - 280*d^6*x*e - 80*d^7)*sqrt(-x^2*e^2 + d^2))/x^7

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 12.95, size = 1513, normalized size = 7.34 \begin {gather*} d^{7} \left (\begin {cases} - \frac {e \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{7 x^{6}} + \frac {e^{3} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{35 d^{2} x^{4}} + \frac {4 e^{5} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{105 d^{4} x^{2}} + \frac {8 e^{7} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{105 d^{6}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\- \frac {i e \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}}{7 x^{6}} + \frac {i e^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}}{35 d^{2} x^{4}} + \frac {4 i e^{5} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}}{105 d^{4} x^{2}} + \frac {8 i e^{7} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}}{105 d^{6}} & \text {otherwise} \end {cases}\right ) + 3 d^{6} e \left (\begin {cases} - \frac {d^{2}}{6 e x^{7} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} + \frac {5 e}{24 x^{5} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} + \frac {e^{3}}{48 d^{2} x^{3} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} - \frac {e^{5}}{16 d^{4} x \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} + \frac {e^{6} \operatorname {acosh}{\left (\frac {d}{e x} \right )}}{16 d^{5}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\\frac {i d^{2}}{6 e x^{7} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {5 i e}{24 x^{5} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e^{3}}{48 d^{2} x^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} + \frac {i e^{5}}{16 d^{4} x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e^{6} \operatorname {asin}{\left (\frac {d}{e x} \right )}}{16 d^{5}} & \text {otherwise} \end {cases}\right ) + d^{5} e^{2} \left (\begin {cases} \frac {3 i d^{3} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}}{- 15 d^{2} x^{5} + 15 e^{2} x^{7}} - \frac {4 i d e^{2} x^{2} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}}{- 15 d^{2} x^{5} + 15 e^{2} x^{7}} + \frac {2 i e^{6} x^{6} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}}{- 15 d^{5} x^{5} + 15 d^{3} e^{2} x^{7}} - \frac {i e^{4} x^{4} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}}{- 15 d^{3} x^{5} + 15 d e^{2} x^{7}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {3 d^{3} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}}{- 15 d^{2} x^{5} + 15 e^{2} x^{7}} - \frac {4 d e^{2} x^{2} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}}{- 15 d^{2} x^{5} + 15 e^{2} x^{7}} + \frac {2 e^{6} x^{6} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}}{- 15 d^{5} x^{5} + 15 d^{3} e^{2} x^{7}} - \frac {e^{4} x^{4} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}}{- 15 d^{3} x^{5} + 15 d e^{2} x^{7}} & \text {otherwise} \end {cases}\right ) - 5 d^{4} e^{3} \left (\begin {cases} - \frac {d^{2}}{4 e x^{5} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} + \frac {3 e}{8 x^{3} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} - \frac {e^{3}}{8 d^{2} x \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} + \frac {e^{4} \operatorname {acosh}{\left (\frac {d}{e x} \right )}}{8 d^{3}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\\frac {i d^{2}}{4 e x^{5} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {3 i e}{8 x^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} + \frac {i e^{3}}{8 d^{2} x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e^{4} \operatorname {asin}{\left (\frac {d}{e x} \right )}}{8 d^{3}} & \text {otherwise} \end {cases}\right ) - 5 d^{3} e^{4} \left (\begin {cases} - \frac {e \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{3 x^{2}} + \frac {e^{3} \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{3 d^{2}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\- \frac {i e \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}}{3 x^{2}} + \frac {i e^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}}{3 d^{2}} & \text {otherwise} \end {cases}\right ) + d^{2} e^{5} \left (\begin {cases} - \frac {e \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{2 x} + \frac {e^{2} \operatorname {acosh}{\left (\frac {d}{e x} \right )}}{2 d} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\\frac {i d^{2}}{2 e x^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e}{2 x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e^{2} \operatorname {asin}{\left (\frac {d}{e x} \right )}}{2 d} & \text {otherwise} \end {cases}\right ) + 3 d e^{6} \left (\begin {cases} \frac {i d}{x \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + i e \operatorname {acosh}{\left (\frac {e x}{d} \right )} - \frac {i e^{2} x}{d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\- \frac {d}{x \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - e \operatorname {asin}{\left (\frac {e x}{d} \right )} + \frac {e^{2} x}{d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) + e^{7} \left (\begin {cases} \frac {d^{2}}{e x \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} - d \operatorname {acosh}{\left (\frac {d}{e x} \right )} - \frac {e x}{\sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\- \frac {i d^{2}}{e x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} + i d \operatorname {asin}{\left (\frac {d}{e x} \right )} + \frac {i e x}{\sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(-e**2*x**2+d**2)**(5/2)/x**8,x)

[Out]

d**7*Piecewise((-e*sqrt(d**2/(e**2*x**2) - 1)/(7*x**6) + e**3*sqrt(d**2/(e**2*x**2) - 1)/(35*d**2*x**4) + 4*e*
*5*sqrt(d**2/(e**2*x**2) - 1)/(105*d**4*x**2) + 8*e**7*sqrt(d**2/(e**2*x**2) - 1)/(105*d**6), Abs(d**2/(e**2*x
**2)) > 1), (-I*e*sqrt(-d**2/(e**2*x**2) + 1)/(7*x**6) + I*e**3*sqrt(-d**2/(e**2*x**2) + 1)/(35*d**2*x**4) + 4
*I*e**5*sqrt(-d**2/(e**2*x**2) + 1)/(105*d**4*x**2) + 8*I*e**7*sqrt(-d**2/(e**2*x**2) + 1)/(105*d**6), True))
+ 3*d**6*e*Piecewise((-d**2/(6*e*x**7*sqrt(d**2/(e**2*x**2) - 1)) + 5*e/(24*x**5*sqrt(d**2/(e**2*x**2) - 1)) +
 e**3/(48*d**2*x**3*sqrt(d**2/(e**2*x**2) - 1)) - e**5/(16*d**4*x*sqrt(d**2/(e**2*x**2) - 1)) + e**6*acosh(d/(
e*x))/(16*d**5), Abs(d**2/(e**2*x**2)) > 1), (I*d**2/(6*e*x**7*sqrt(-d**2/(e**2*x**2) + 1)) - 5*I*e/(24*x**5*s
qrt(-d**2/(e**2*x**2) + 1)) - I*e**3/(48*d**2*x**3*sqrt(-d**2/(e**2*x**2) + 1)) + I*e**5/(16*d**4*x*sqrt(-d**2
/(e**2*x**2) + 1)) - I*e**6*asin(d/(e*x))/(16*d**5), True)) + d**5*e**2*Piecewise((3*I*d**3*sqrt(-1 + e**2*x**
2/d**2)/(-15*d**2*x**5 + 15*e**2*x**7) - 4*I*d*e**2*x**2*sqrt(-1 + e**2*x**2/d**2)/(-15*d**2*x**5 + 15*e**2*x*
*7) + 2*I*e**6*x**6*sqrt(-1 + e**2*x**2/d**2)/(-15*d**5*x**5 + 15*d**3*e**2*x**7) - I*e**4*x**4*sqrt(-1 + e**2
*x**2/d**2)/(-15*d**3*x**5 + 15*d*e**2*x**7), Abs(e**2*x**2/d**2) > 1), (3*d**3*sqrt(1 - e**2*x**2/d**2)/(-15*
d**2*x**5 + 15*e**2*x**7) - 4*d*e**2*x**2*sqrt(1 - e**2*x**2/d**2)/(-15*d**2*x**5 + 15*e**2*x**7) + 2*e**6*x**
6*sqrt(1 - e**2*x**2/d**2)/(-15*d**5*x**5 + 15*d**3*e**2*x**7) - e**4*x**4*sqrt(1 - e**2*x**2/d**2)/(-15*d**3*
x**5 + 15*d*e**2*x**7), True)) - 5*d**4*e**3*Piecewise((-d**2/(4*e*x**5*sqrt(d**2/(e**2*x**2) - 1)) + 3*e/(8*x
**3*sqrt(d**2/(e**2*x**2) - 1)) - e**3/(8*d**2*x*sqrt(d**2/(e**2*x**2) - 1)) + e**4*acosh(d/(e*x))/(8*d**3), A
bs(d**2/(e**2*x**2)) > 1), (I*d**2/(4*e*x**5*sqrt(-d**2/(e**2*x**2) + 1)) - 3*I*e/(8*x**3*sqrt(-d**2/(e**2*x**
2) + 1)) + I*e**3/(8*d**2*x*sqrt(-d**2/(e**2*x**2) + 1)) - I*e**4*asin(d/(e*x))/(8*d**3), True)) - 5*d**3*e**4
*Piecewise((-e*sqrt(d**2/(e**2*x**2) - 1)/(3*x**2) + e**3*sqrt(d**2/(e**2*x**2) - 1)/(3*d**2), Abs(d**2/(e**2*
x**2)) > 1), (-I*e*sqrt(-d**2/(e**2*x**2) + 1)/(3*x**2) + I*e**3*sqrt(-d**2/(e**2*x**2) + 1)/(3*d**2), True))
+ d**2*e**5*Piecewise((-e*sqrt(d**2/(e**2*x**2) - 1)/(2*x) + e**2*acosh(d/(e*x))/(2*d), Abs(d**2/(e**2*x**2))
> 1), (I*d**2/(2*e*x**3*sqrt(-d**2/(e**2*x**2) + 1)) - I*e/(2*x*sqrt(-d**2/(e**2*x**2) + 1)) - I*e**2*asin(d/(
e*x))/(2*d), True)) + 3*d*e**6*Piecewise((I*d/(x*sqrt(-1 + e**2*x**2/d**2)) + I*e*acosh(e*x/d) - I*e**2*x/(d*s
qrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (-d/(x*sqrt(1 - e**2*x**2/d**2)) - e*asin(e*x/d) + e**2*x
/(d*sqrt(1 - e**2*x**2/d**2)), True)) + e**7*Piecewise((d**2/(e*x*sqrt(d**2/(e**2*x**2) - 1)) - d*acosh(d/(e*x
)) - e*x/sqrt(d**2/(e**2*x**2) - 1), Abs(d**2/(e**2*x**2)) > 1), (-I*d**2/(e*x*sqrt(-d**2/(e**2*x**2) + 1)) +
I*d*asin(d/(e*x)) + I*e*x/sqrt(-d**2/(e**2*x**2) + 1), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 505 vs. \(2 (173) = 346\).
time = 0.66, size = 505, normalized size = 2.45 \begin {gather*} -3 \, d \arcsin \left (\frac {x e}{d}\right ) e^{7} \mathrm {sgn}\left (d\right ) - \frac {15}{16} \, d e^{7} \log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-x^{2} e^{2} + d^{2}} e \right |} e^{\left (-2\right )}}{2 \, {\left | x \right |}}\right ) + \frac {{\left (5 \, d e^{7} + \frac {35 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} d e^{5}}{x} + \frac {49 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{2} d e^{3}}{x^{2}} - \frac {245 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{3} d e}{x^{3}} - \frac {875 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{4} d e^{\left (-1\right )}}{x^{4}} + \frac {455 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{5} d e^{\left (-3\right )}}{x^{5}} + \frac {9065 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{6} d e^{\left (-5\right )}}{x^{6}}\right )} x^{7} e^{14}}{4480 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{7}} - \frac {259 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} d e^{5}}{128 \, x} - \frac {13 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{2} d e^{3}}{128 \, x^{2}} + \frac {25 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{3} d e}{128 \, x^{3}} + \frac {7 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{4} d e^{\left (-1\right )}}{128 \, x^{4}} - \frac {7 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{5} d e^{\left (-3\right )}}{640 \, x^{5}} - \frac {{\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{6} d e^{\left (-5\right )}}{128 \, x^{6}} - \frac {{\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{7} d e^{\left (-7\right )}}{896 \, x^{7}} + \sqrt {-x^{2} e^{2} + d^{2}} e^{7} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x^8,x, algorithm="giac")

[Out]

-3*d*arcsin(x*e/d)*e^7*sgn(d) - 15/16*d*e^7*log(1/2*abs(-2*d*e - 2*sqrt(-x^2*e^2 + d^2)*e)*e^(-2)/abs(x)) + 1/
4480*(5*d*e^7 + 35*(d*e + sqrt(-x^2*e^2 + d^2)*e)*d*e^5/x + 49*(d*e + sqrt(-x^2*e^2 + d^2)*e)^2*d*e^3/x^2 - 24
5*(d*e + sqrt(-x^2*e^2 + d^2)*e)^3*d*e/x^3 - 875*(d*e + sqrt(-x^2*e^2 + d^2)*e)^4*d*e^(-1)/x^4 + 455*(d*e + sq
rt(-x^2*e^2 + d^2)*e)^5*d*e^(-3)/x^5 + 9065*(d*e + sqrt(-x^2*e^2 + d^2)*e)^6*d*e^(-5)/x^6)*x^7*e^14/(d*e + sqr
t(-x^2*e^2 + d^2)*e)^7 - 259/128*(d*e + sqrt(-x^2*e^2 + d^2)*e)*d*e^5/x - 13/128*(d*e + sqrt(-x^2*e^2 + d^2)*e
)^2*d*e^3/x^2 + 25/128*(d*e + sqrt(-x^2*e^2 + d^2)*e)^3*d*e/x^3 + 7/128*(d*e + sqrt(-x^2*e^2 + d^2)*e)^4*d*e^(
-1)/x^4 - 7/640*(d*e + sqrt(-x^2*e^2 + d^2)*e)^5*d*e^(-3)/x^5 - 1/128*(d*e + sqrt(-x^2*e^2 + d^2)*e)^6*d*e^(-5
)/x^6 - 1/896*(d*e + sqrt(-x^2*e^2 + d^2)*e)^7*d*e^(-7)/x^7 + sqrt(-x^2*e^2 + d^2)*e^7

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d^2-e^2\,x^2\right )}^{5/2}\,{\left (d+e\,x\right )}^3}{x^8} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d^2 - e^2*x^2)^(5/2)*(d + e*x)^3)/x^8,x)

[Out]

int(((d^2 - e^2*x^2)^(5/2)*(d + e*x)^3)/x^8, x)

________________________________________________________________________________________